bnpa - Bayesian Networks & Path Analysis
This project aims to enable the method of Path Analysis to
infer causalities from data. For this we propose a hybrid
approach, which uses Bayesian network structure learning
algorithms from data to create the input file for creation of a
PA model. The process is performed in a semi-automatic way by
our intermediate algorithm, allowing novice researchers to
create and evaluate their own PA models from a data set. The
references used for this project are: Koller, D., & Friedman,
N. (2009). Probabilistic graphical models: principles and
techniques. MIT press. <doi:10.1017/S0269888910000275>.
Nagarajan, R., Scutari, M., & Lèbre, S. (2013). Bayesian
networks in r. Springer, 122, 125-127. Scutari, M., & Denis, J.
B. <doi:10.1007/978-1-4614-6446-4>. Scutari M (2010). Bayesian
networks: with examples in R. Chapman and Hall/CRC.
<doi:10.1201/b17065>. Rosseel, Y. (2012). lavaan: An R Package
for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1 - 36. <doi:10.18637/jss.v048.i02>.